Recognizing Entailment and Contradiction by Tree-based Convolution

نویسندگان

  • Lili Mou
  • Rui Men
  • Ge Li
  • Yan Xu
  • Lu Zhang
  • Rui Yan
  • Zhi Jin
چکیده

In this paper, we propose the TBCNNpair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentencelevel semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms existing sentence encoding-based approaches by a large margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Language Inference by Tree-Based Convolution and Heuristic Matching

In this paper, we propose the TBCNNpair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentencelevel semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms exi...

متن کامل

A Joint Syntactic-Semantic Representation for Recognizing Textual Relatedness

This paper describes our participation in the Recognizing Textual Entailment challenge (RTE-5) in the Text Analysis Conference (TAC 2009). Following the two-stage binary classification strategy, our focus this year is to recognize related Text-Hypothesis pairs instead of entailment pairs. In particular, we propose a joint syntactic-semantic representation to better capture the key information s...

متن کامل

Recognizing Confinement in Web Texts

In the Recognizing Textual Entailment (RTE) task, sentence pairs are classified into one of three semantic relations: ENTAILMENT, CONTRADICTION or UNKNOWN. While we find some sentence pairs hold full entailments or contradictions, there are a number of pairs that partially entail or contradict one another depending on a specific situation. These partial contradiction sentence pairs contain usef...

متن کامل

A Confidence Model for Syntactically-Motivated Entailment Proofs

This paper presents a novel method for recognizing textual entailment which derives the hypothesis from the text through a sequence of parse tree transformations. Unlike related approaches based on tree-edit-distance, we employ transformations which better capture linguistic structures of entailment. This is achieved by (a) extending an earlier deterministic knowledge-based algorithm with synta...

متن کامل

Overview of NTCIR-9 RITE: Recognizing Inference in TExt

This paper introduces an overview of the RITE (Recognizing Inference in TExt) task in NTCIR-9. We evaluate systems that automatically recognize entailment, paraphrase, and contradiction between two texts written in Japanese, Simplified Chinese, or Traditional Chinese. The task consists of four subtasks: Binary classification of entailment (BC); Multi-class classification including paraphrase an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.08422  شماره 

صفحات  -

تاریخ انتشار 2015